Life And Times Of Sir Isaac Newton

Newton, Sir Isaac (1642-1727), mathematician and physicist, one of the foremost scientific intellects of all time. Born at Woolsthorpe, near Grantham in Lincolnshire, where he went to school, he began to attend Cambridge University in 1661; he was elected a Fellow of Trinity College in 1667, and a Lucasian mathematics professor in 1669. He stayed at the university, lecturing most of the years, until 1696. During these Cambridge years, in which Newton was at the top of his creative power, he singled out 1665-1666 as the prime of his age for invention. During two to three years of intense mental effort he prepared Philosophiae Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy) known mostly as the Principia, though it was not put into print until 1687.
As a firm opponent of the attempt by King James II to make the universities into Catholic institutions, Newton was elected Member of Parliament for the University of Cambridge to the Convention Parliament of 1689, and was also re-elected again in 1701-1702. Meanwhile, in 1696 he had moved to London as Warden of the Royal Mint. He became Master of the Mint in 1699, an office he held to his death. He was elected a Fellow of the Royal Society of London in 1671, and in 1703 he became President of the society, being annually re-elected for the rest of his life. His major work Opticks, appeared the next year; he was knighted in Cambridge in 1705.
As Newtonian science became increasingly accepted on the Continent, and especially after a general peace was restored in 1714, following the War of the Spanish Succession, Newton became the most highly esteemed philosopher in Europe. His last decades were passed in revising his major works, polishing his studies of ancient history, and defending himself against critics, as well as carrying out his official duties. Newton was modest, reserved, and a man of simple tastes. He was upset by criticism or opposition, and hated resentment; he was harsh towards enemies but nice to friends. In government, and at the Royal Society, he was an able administrator. He was never married and lived humblely, but was buried with great pomp in Westminster Abbey.
Newton has been considered for almost 300 years as the founding philsospher of modern physical science, his achievements in experimental investigation as good as those in mathematical research.
In 1664, while still a student, Newton read recent work on optics and light by the English physicists Robert Boyle and Robert Hooke; he also studied both the mathematics and the physics of the French philosopher and scientist Rene' Descartes. He explored the refraction of light by a glass prism; developing over a few years a series of increasingly detailed, refined, and exact experiments, Newton discovered measurable, mathematical patterns in the mircle of color. He found white light to be a mixture of infinitely varied colored rays (shown in the rainbow and the spectrum), each ray identified by the angle through which it is refracted on entering or leaving a given transparent medium. He correlated this notion with his study of the interference colors of thin films , using a simple technique of extreme acuity to measure the thickness of such films. He held that light consisted of streams of minute particles. From his experiments he could conclude the magnitudes of the transparent corpuscles forming the surfaces of bodies, which, according to their dimensions, so interacted with white light as to reflect, selectively, the different observed colors of those surfaces.
The roots of these unconventional ideas were with Newton by about 1668; when first expressed in public in 1672 and 1675, they brought on hostile criticism, mainly because colors were thought to be changed forms of homogeneous white light. Doubts, and Newton's answers, were printed in the learned journals. Notably, the scepticism of Christiaan Huygens and the failure of the French physicist Edme' Mariotte to copy Newton's refraction experiments in 1681 set scientists on the Continent against him for a years. The publication of Opticks, mostly written by 1692, was delayed by Newton until his critics were dead. The book was still not right: the colors of diffraction defeated Newton. Still, Opticks established itself, from about 1715, as a model of the intertwining of theory with quantitative experimentation.
In mathematics