Deregulation


Deregulation of the U.S. airline industry has resulted in ticket prices dropping by a third, on an inflation-adjusted basis. As a result some 1.6 million people fly on 4,000 aircraft every day. Airlines carried 643 million passengers in 1998, a 25% increase over 1993 and the FAA estimates that the nation??s airline system will have to accommodate 917 million passengers by the year 2008. The growth in air travel threatens to overwhelm the presently inadequate air traffic control system, which has not kept pace with available technology in navigation, communications, and flight surveillance. Much of the equipment used for air traffic control today is based on fifty-year-old technology; for example, analog simplex voice links for communications and ground-based radar for surveillance, and VHF Omnidirectional Range/Distance Measuring Equipment (VOR/DME) for navigation. The lack of system automation imposes heavy workloads on human air traffic controllers and increases the risk of accidents in heavy traffic situations.
Capacity limits are being reached in both airports and airspace, with congestion delays in departure and arrival schedules reaching record numbers. Funds to upgrade the air traffic control system are available in the trust fund created to receive the tax applied to airline passenger tickets and the tax on fuel for general aviation. The General Accounting Office says modernizing the air traffic control system will cost at least 17 billion for just the first 5 years of the FAA??s 15-year National Airspace System improvement plan. It is the NAS that provides the services and infrastructure for air transportation. Air transportation represents 6% of the Nation??s gross domestic product, so the NAS is a critical element of our national economy.
Given the size of the NAS, the task ahead is enormous. Our NAS includes more than 18,300 airports, 21 air route traffic control centers, over 460 air traffic control towers and 75 flight service stations, and approximately 4,500 air navigation facilities. The NAS spans the country, extends into the oceans, and interfaces with neighboring air traffic control systems for international flights. The NAS relies on approximately 30,000 FAA employees to provide air traffic control, flight service, security, and field maintenance services. More than 616,000 active pilots operating over 280,000 commercial, regional, general aviation and military aircraft use the NAS.
On March 11, 1999, the FAA released the NAS Architecture Version 4.0 to the public. Key influences on the architecture include the 1996 White House Commission on Aviation Safety and Security, which recommended that the FAA accelerate modernization of the NAS, and the 1997 National Civil Aviation Review Commission, which recommended funding and performance management methods for implementing NAS modernization. It describes the agency??s modernization strategy from 1998 through 2015. Based on the Free Flight operational concept, Version 4.0 contains capabilities, technologies, and systems to enhance the safety of the aviation system and provide users and service providers with more efficient services. Free Flight centers on allowing pilots, whenever practical, to choose the optimum flight profile. This concept of operations is expected to decrease user costs, improve airspace flexibility, and remove flight restrictions.
The NAS Architecture is divided into three modernization phases and its implementation is being synchronized with the International Civil Aviation Organization to ensure interoperability and global integration.
?h Phase 1 (1998-2002) focuses on sustaining essential air traffic control services and delivering early user benefits. Free Flight Phase 1 will be implemented. Controller computer workstations will begin major upgrades. Satellite-based navigation systems will be deployed, and air-to-air surveillance will be introduced. The ??Year 2000?? computer problem will hopefully be fixed.
?h Phase 2 (2003-2007) concentrates on deploying the next generation of communications, navigation and surveillance (CNS) equipment and the automation upgrades necessary to accommodate new CNS capabilities. Satellite-based navigation systems will be further augmented in local areas for more precise approaches. New digital radios that maximize the spectrum channels will be installed. As users equip, automatic dependent surveillance ground equipment will be installed to extend air traffic control surveillance services to non-radar areas. Tools from Phase 1 will be deployed throughout the NAS and upgraded as necessary.
?h Phase 3 (2008-2015) completes the required infrastructure and integration of automation advancements with the new CNS technologies, enabling additional Free Flight capabilities throughout the NAS. Two important features will be NAS-wide information sharing among users and service providers and ??four-dimensional?? flight profiles that